3.356 \(\int \frac{(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=121 \[ \frac{2 \left (3 a^2 B+6 a A b+b^2 B\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 \left (a^2 A-2 a b B-A b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 A \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 b^2 B \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d} \]

[Out]

(-2*(a^2*A - A*b^2 - 2*a*b*B)*EllipticE[(c + d*x)/2, 2])/d + (2*(6*a*A*b + 3*a^2*B + b^2*B)*EllipticF[(c + d*x
)/2, 2])/(3*d) + (2*a^2*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + (2*b^2*B*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*
d)

________________________________________________________________________________________

Rubi [A]  time = 0.245916, antiderivative size = 121, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.152, Rules used = {2988, 3023, 2748, 2641, 2639} \[ \frac{2 \left (3 a^2 B+6 a A b+b^2 B\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 \left (a^2 A-2 a b B-A b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 A \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 b^2 B \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(-2*(a^2*A - A*b^2 - 2*a*b*B)*EllipticE[(c + d*x)/2, 2])/d + (2*(6*a*A*b + 3*a^2*B + b^2*B)*EllipticF[(c + d*x
)/2, 2])/(3*d) + (2*a^2*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + (2*b^2*B*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*
d)

Rule 2988

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*c - A*d)*(b*c - a*d)^2*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/
(f*d^2*(n + 1)*(c^2 - d^2)), x] - Dist[1/(d^2*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*Simp[d*(n
 + 1)*(B*(b*c - a*d)^2 - A*d*(a^2*c + b^2*c - 2*a*b*d)) - ((B*c - A*d)*(a^2*d^2*(n + 2) + b^2*(c^2 + d^2*(n +
1))) + 2*a*b*d*(A*c*d*(n + 2) - B*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b^2*B*d*(n + 1)*(c^2 - d^2)*Sin[e + f*x
]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && LtQ[n, -1]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 a^2 A \sin (c+d x)}{d \sqrt{\cos (c+d x)}}-2 \int \frac{-\frac{1}{2} a (2 A b+a B)+\frac{1}{2} \left (a^2 A-A b^2-2 a b B\right ) \cos (c+d x)-\frac{1}{2} b^2 B \cos ^2(c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a^2 A \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 b^2 B \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}-\frac{4}{3} \int \frac{\frac{1}{4} \left (-b^2 B-3 a (2 A b+a B)\right )+\frac{3}{4} \left (a^2 A-A b^2-2 a b B\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a^2 A \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 b^2 B \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}-\left (a^2 A-A b^2-2 a b B\right ) \int \sqrt{\cos (c+d x)} \, dx-\frac{1}{3} \left (-6 a A b-3 a^2 B-b^2 B\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{2 \left (a^2 A-A b^2-2 a b B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 \left (6 a A b+3 a^2 B+b^2 B\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 A \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 b^2 B \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.605016, size = 102, normalized size = 0.84 \[ \frac{2 \left (\left (3 a^2 B+6 a A b+b^2 B\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+\left (-3 a^2 A+6 a b B+3 A b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+\frac{\sin (c+d x) \left (3 a^2 A+b^2 B \cos (c+d x)\right )}{\sqrt{\cos (c+d x)}}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(2*((-3*a^2*A + 3*A*b^2 + 6*a*b*B)*EllipticE[(c + d*x)/2, 2] + (6*a*A*b + 3*a^2*B + b^2*B)*EllipticF[(c + d*x)
/2, 2] + ((3*a^2*A + b^2*B*Cos[c + d*x])*Sin[c + d*x])/Sqrt[Cos[c + d*x]]))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 3.398, size = 404, normalized size = 3.3 \begin{align*} -{\frac{2}{3\,d} \left ( 4\,{b}^{2}B\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+6\,Aab\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +3\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}-3\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{2}-6\,A{a}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+3\,B{a}^{2}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +{b}^{2}B\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -6\,B\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab-2\,B{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x)

[Out]

-2/3*(4*b^2*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+6*A*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^
(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-6*A*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+3*B*a^2*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+b^2*B*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*B*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-2*B*b^2*cos(1/2*d*x+1/
2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )}{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B b^{2} \cos \left (d x + c\right )^{3} + A a^{2} +{\left (2 \, B a b + A b^{2}\right )} \cos \left (d x + c\right )^{2} +{\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((B*b^2*cos(d*x + c)^3 + A*a^2 + (2*B*a*b + A*b^2)*cos(d*x + c)^2 + (B*a^2 + 2*A*a*b)*cos(d*x + c))/co
s(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2*(A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )}{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(3/2), x)